Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts
نویسندگان
چکیده
Supported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch. Here we show for the first time how incipient wetness impregnation leads to 10-fold variations in silver loading between individual submillimeter-sized silica support granules. This heterogeneity has a profound impact on the catalytic performance, with 100-fold variations in hydrogenation performance at the same level. In a straightforward fashion, optical microscopy interlinks single support particle level catalytic measurements to structural and compositional information. These detailed correlations reveal the optimal silver loading. A thorough consideration of catalyst heterogeneity and the impact thereof on the catalytic performance is indispensable in the development of catalysts.
منابع مشابه
Silver nanoparticles supported on passivated silica: preparation and catalytic performance in alkyne semi-hydrogenation.
Herein, we report the preparation of small and narrowly distributed (2.1 ± 0.5 nm) Ag nanoparticles supported on passivated silica, where the surface OH groups are replaced by OSiMe3 functionalities. This synthetic method involves the grafting of silver(I) bis(trimethylsilyl)amide ([AgN(SiMe3)2]4) on silica partially dehydroxylated at 700 °C, followed by a thermal treatment of the grafted compl...
متن کاملHydroconversion of Furfural over Cu-Cr/SiO2 Nanocatalysts: A Comparative Study
Furfural is one of the most promising chemical platforms with bright perspective with respect to the production of biobased chemicals and fuels from lignocellulosic material. Globally, the majority of this biomass derived chemical is converted into furfuryl alcohol, a building block in polymers industry. The vapor-phase hydrogenation of furfural over copper species dispersed on two types of sil...
متن کاملIN SITU SILICA SUPPORTED METALLOCENE CATALYSTS FOR ETHYLENE POLYMERIZATION
Bis(2-R-ind)ZrCl2 (R: H or phenyl) was supported on different types of silica by in situ impregnation method and used for ethylene polymerization. In this method, the step of catalyst loading on support was eliminated and common alkyl aluminum (triisobutylaluminum, TiBA) cocatalyst was used instead of expensive methyl aluminiumoxane (MAO) cocatalyst in the polymerization. The effect of surface ...
متن کاملEffect of textural properties of Ni (Nano)-supported catalysts on the selective benzene hydrogenation in the vapor phase
Ni catalysts supported on Nano porous catalysts were prepared by the impregnation method and tested for vapor phase hydrogenation of benzene. The textural and physico-chemical properties of Ni catalysts were characterized by the X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope and N2 adsorption-desorption analysis. The catalytic evaluation reve...
متن کاملEffect of support nature on performance and kinetics of nickel nanoparticles in toluene hydrogenation
The kinetics of toluene hydrogenation over Ni-supported catalysts with various supports was investigated under the wide range of conditions as 130 to 210 °C reaction temperature, 2.6×10-5 to 5.9×10-5 atm partial pressure of hydrogen and 1.4×10-9 to 3.7×10-8 atm partial pressure of toluene. For more study, two kinetics models were also selected and studied to describe the kinetics of this proces...
متن کامل